
# HDT Labs Model HD4PNBFG40

## High Definition 40dB Fixed Gain 250MHz to 2150MHz Amplifier



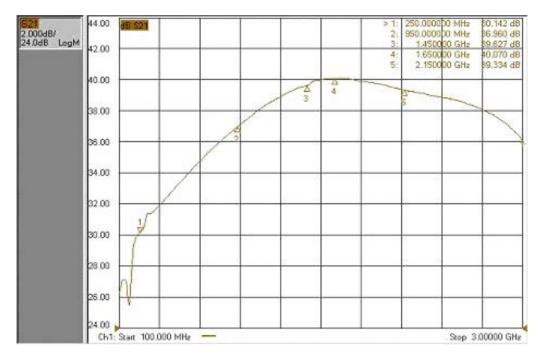
## Description

The HD4PNBFG40B is a Professional-Grade 4-channel 40dB fixed gain amplifier designed to recover lowlevel signals that may be well below the threshold of most satellite power meters. Each channel has a fixed gain in excess of 40dB with 10dB slope compensation and covers a frequency range of 250MHz to 2150MHz. The HD4PNBFG40B is used in conjunction with stacked, multiswitch, and head-end systems to overcome cable, splitter, tap, and other system losses. The inputs and outputs of each of the four amplifier channels have internal DC blocking capacitors, thus eliminating the need to add external DC blocking capacitors. MADE IN USA

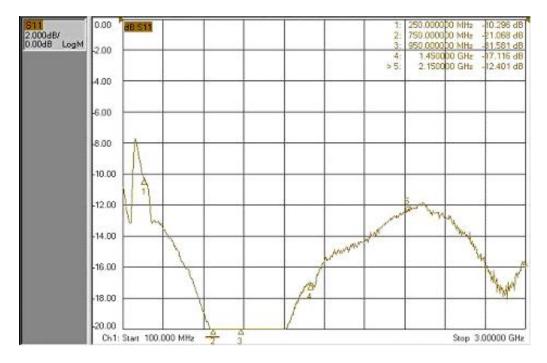
### **Features:**

- Wide signal dynamic range capability
- Ultra-low level signal recovery
- Corrosion-resistant connectors
- Rugged aluminum construction

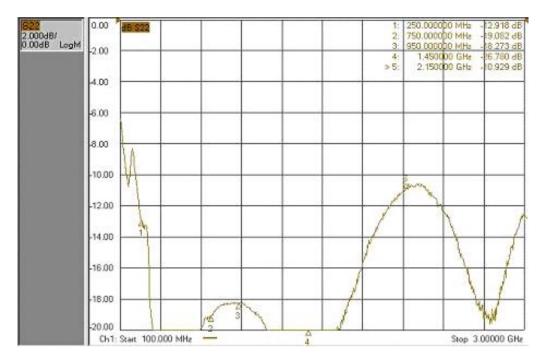
| Specification<br>Frequency                      | <b>Minimum</b><br>250MHz | Typical | <b>Maximum</b><br>2150MHz |
|-------------------------------------------------|--------------------------|---------|---------------------------|
| Noise Figure                                    |                          | 3.8dB   | 4.8dB                     |
| Absolute Maximum Total Input Power <sup>1</sup> |                          |         | -20dBm                    |
| Input Power Range                               | -75dBm <sup>2</sup>      |         | -40dBm <sup>3</sup>       |
| Individual Transponder Output Power             |                          | 0dBm    |                           |
| Gain                                            |                          |         |                           |
| at 250MHz                                       | 29.0dB                   | 30.0dB  | 31.0dB                    |
| at 750MHz                                       | 34.5dB                   | 35.5dB  | 36.5dB                    |
| at 950MHz                                       | 36.0dB                   | 37.0dB  | 38.0dB                    |
| at 1450MHz                                      | 39.0dB                   | 40.0dB  | 41.0dB                    |
| at 1650MHz                                      | 39.5dB                   | 40.5dB  | 41.5dB                    |
| at 2150MHz                                      | 39.0dB                   | 40.0dB  | 41.0dB                    |
| Channel-to-Channel Isolation <sup>4</sup>       |                          | 45dB    |                           |


| Specification                                                         | Minimum      | Typical | Maximum |
|-----------------------------------------------------------------------|--------------|---------|---------|
| Input Return Loss                                                     |              |         |         |
| at 250MHz                                                             |              | 11dB    |         |
| at 950MHz                                                             |              | 30dB    |         |
| at 1450MHz                                                            |              | 17dB    |         |
| at 2150MHz                                                            |              | 12dB    |         |
| Output Return Loss                                                    |              |         |         |
| at 250MHz                                                             |              | 12dB    |         |
| at 950MHz                                                             |              | 18dB    |         |
| at 1450MHz                                                            |              | 25dB    |         |
| at 2150MHz                                                            |              | 11dB    |         |
| 1dB Input Gain Compression Point <sup>5</sup>                         |              |         |         |
| at 250MHz                                                             |              | -12dBm  |         |
| at 950MHz                                                             |              | -18dBm  |         |
| at 1450MHz                                                            |              | -22dBm  |         |
| at 2150MHz                                                            |              | -24dBm  |         |
| Input Signal Power for 3 <sup>rd</sup> Order Intermod Rejection Ratio | of $40 dB^6$ |         |         |
| at 250MHz                                                             |              | -21dBm  |         |
| at 950MHz                                                             |              | -30dBm  |         |
| at 1450MHz                                                            |              | -35dBm  |         |
| at 2150MHz                                                            |              | -36dBm  |         |
| DC Supply Voltage                                                     |              |         | 12VDC   |
| DC Supply Current.                                                    |              |         | 650mA   |

For Indoor Use Only. The HD4PNBFG40B is supplied with an external 12VDC power supply. Operating temperature of the HD4PNBFG40B is  $-40^{\circ}$ C to  $+85^{\circ}$ C. The mechanical dimensions are  $6.4''W \times 4.4''L \times 1.5''H$ 


(Specifications subject to change without notice.)

Notes:


- Absolute Maximum Power is the total power that arrives at the amplifier input from 250MHz to 2150MHz. Satellite power meters typically read the power level of a single transponder at a time. If all transponders are active from 250MHz to 2150MHz and the power of all transponders are equal, then total available input power across the 250MHz to 2150MHz bandwidth is approximated by taking the satellite power meter reading at 1450MHz and adding 20dB. Make sure not to exceed –20dBm as measured with a satellite power meter at 1450MHz.
- 2. The -75dBm level assumes that the overall system noise figure is not too high such that the carrier-to-noise ratio of the satellite signal has not been degraded such that signal recovery is not possible. Signal levels lower than -75dBm can be recovered with properly designed systems having over-all low system noise figures. Low noise figure systems are achieved by avoiding the addition of too many attenuators or too much loss in front of an amplifier block. It is always better to add loss after an amplifier to minimize system noise figure as long as the signal at the amplifier input does not over-drive that amplifier.
- 3. Assumes maximum power levels as measured with a satellite power meter and all transponder signals active from 250MHz to 2150MHz. (See note 1) A frequency response loss slope of 10dB is assumed, i.e. transponder power measured at 250MHz with a satellite power meter is 10dB higher than power measured at 2150MHz due to cable loss versus frequency characteristics. If transponder power levels are equal, limit the maximum power to -40dBm at all frequencies. An easy method to determine if the amplifier is being over-driven is to connect a satellite power meter to the output of the amplifier and check C/N, BER, and IRD performance. If acceptable transponder power levels are measured but low C/N values, high BER values, and low IRD levels are measured, reduce the input level into the amplifier until good C/N, BER, and IRD results are measured.
- 4. Channel-to-Channel Isolation is measured referenced to the output of each amplifier. Channel-to-Channel Isolation has a typical value of 35dB at 2150MHz.
- 5. Measured using a single CW signal. No transponder signals present.
- 6. Measured using two CW signals with 1MHz spacing. No transponder signals present.



Gain



#### **Input Return Loss**



**Output Return Loss**